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Abstract. A superspace with two commuting and two anti-commuting co-ordinates is 
discussed with particular emphasis on its superconformal properties. A complete expansion 
of the supervierbein is given and the local supersymmetry transformations of the component 
fields derived. Super Weyl transformations are defined and it is shown that (2+2)- 
dimensional superspace is superconformally flat. The spinning string is re-examined and 
the problems of previous approaches resolved. 

1. Introduction 

Superspaces-spaces with both commuting and anti-commuting co-ordinates-have 
proved to be of great value in the formulation of globally supersymmetric field theories 
(Fayet and Ferrara 1977). In locally supersymmetric theories, e.g. supergravity 
(Freedman er a1 1976; Deser and Zumino 1976a), the superspace technique has been of 
less practical use due to the proliferation of physically redundant component fields and 
transformations. Nevertheless, the relationship between the conventional space time 
formalism and the superspace approach is of considerable interest. In four dimensional 
supergravity, the equations of motion and an action principle have been given in 
superspace (Wess and Zumino 1977, 1978; Grimm er a1 1978) and, more recently, a 
more detailed investigation has been conducted (Brink eta1 1978). In this paper we deal 
with a simpler case, namely a superspace with two co-ordinates of each type. We feel 
that this is a subject worthy of study in its own right since there are considerable 
simplifications in ordinary two dimensional geometry and it is therefore of interest to 
see whether the corresponding superspace mimicks this state of affairs. 

Our approach to the problem consists of imposing certain ‘kinematic’ constraints on 
the supertorsion (analogous to those adopted in four dimensions) (Wes and Zumino 
1977, 1978; Grimm er a1 1978) and then systematically solving for the components of 
the supervierbein by choosing a suitable gauge. We find that the supertorsion and the 
supercurvature are expressible in terms of one scalar superfield, and that the 
components of the supervierbein and the superconnection may be written down in terms 
of the vierbein, the Rarita-Schwinger field and one auxiliary scalar field. We are then 
able to derive the locally supersymmetry transformations for these fields. We then turn 
our attention to the superconformal properties of our space. Having defined super 
Weyl transformations, we compute their effect on the various geometrical quantities 
and show that, at least if our kinematic constraints hold, (2 + 2)-dimensional superspace 
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is superconformally flat-the analogous result to that obtaining for ordinary two 
dimensional space. Finally, the spinning string is revisited and discussed in terms of our 
formalism. An appendix summarising notational conventions is included. 

2. General properties 

We consider a superspace with co-ordinates z M  = ( x m ,  e " )  where m and p can both 
take on two values. The x's are the normal commuting co-ordinates whilst the 8's 
anticommute. Using the standard convention that (-l)m is plus (minus) one if the index 
M is bosonic (fermionic), one can express this succinctly by, 

zMzN = (-l)""zNzM. 

At each point in superspace we introduce a set of basis one-forms E A ,  

E A  = dz "EMA (2.2) 

where EMA is the supervierbein. This set of frames is required to be Lorentzian in the 
sense that the tangent space group acts on E A  according to 

SEA = EBLBA (2.3) 

L~~  LE^^ 
where 

Eba = ~ b ' ;  E b a  = E 8 a = 0 ;  EoP =i(~s)s~. 
Given a field VA, transforming under this group as a vector, say, we may define a 

covariant exterior derivative by 

D V A = d V A +  VBaBA=dzMDMVA (2.4) 

ClBA = dz flM,BA. (2.5) 

asA = a ~ ~ ~ .  (2.6) 

where asA is the superconnection, 

In view of the structure of the tangent space group we may take 

Sz transforms inhomogeneously under (2.3); 

6i-I = -dL. (2.7) 
The above definitions may be extended straightforwardly to any p-form transforming in 
a well-defined way under (2.3). In particular, there are two important two-forms, the 
torsion and curvature defined by 

They satisfy the Bianchi identities, 

D T ~  = A R~~ 

D R ~ ~  = 0. 
(2.9) 

(2.10) 
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Again, the two-dimensional Lorentz group allows us to make the simplification 

RAB = F E A B ;  F = dR (2.11) 

in which case (2.10) becomes the obvious identity 

d F  = 0. 

In order to reduce the independent components of these tensors, we will employ (2.9) 
which, written out in full, reads 

R [ A B , C I ~  = D [ A T B c ] ~  + T [ A B I ~ T F I C ] ~  (2.12) 

where the square brackets denote generalised anti-symmetrisation, e.g. 

T[AB] = ?!(TAB - (- 1 lab TBA). 

By DA we mean EAMDM where is the inverse supervierbein 

E ~ ~ E ~ ~  = 6AB.  

As our kinematic constraints on the supertorsion we take 

Tp/ = 2i(r")py, Toy" = Tb: = 0. (2.13) 

Utilising the Bianchi identity R L , ~ ~ ~ ~  = 0 we find 

Tp," = 0. (2.14) 
s Combining the Rap,: and Rae,? identities one finds 

Tby" = $(rb)yuS (2.15) 

F a p  = -i(rs),eS (2.16) 

where S is a scalar superfield. The identities with R,b.cd and Rap,: then yield 

(2.17) 

(2.18) 

Finally, the Rob,: equation tells us that 

(2.19) 

Hence we have succeeded in expressing all the components of the curvature and torsion 
in terms of one scalar superfield S.  We remark that if S vanishes, so does the curvature 
and the space is flat. In this case the supervierbein takes the simple form 

2 Fob = ieab D ,  D"S - a&bS . 

E," = 6," ; E," = 0 ,  E," = io* ( y"),,, ; E," = 8,". (2.20) 

3. The supervierbein 

Under a general co-ordinate transformation in superspace, tM  + z r M ( z ) ,  the super- 
vierbein changes as follows; 
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Clearly, we can expand z '  as a power series in 8, ; 

f m  = x ' m ( x ) + e A 5 A m ( x ) + t e A e A g m ( x )  

Z', = f " ( X ) f 8 A D ~ L I ( X ) f 5 e A 8 ~ 7 7 C L ( X ) .  (3.2) 

We observe that under such a transformation EFA transforms in a simple manner 
and indeed one can use some of the parameters in the expansion (3.2) to translate some 
of the components of E," to zero. Explicitly, tAm may be used to gauge away the 
leading component of E," and, because of the non-singularity of the supervierbein and 
the transformations, we may use DAW to set the first term of E," equal to 6,". Similarly, 
g"' and 77, may be used to transform the antisymmetric parts of the coefficients of O A  in 
the expansions of both E," and E," to zero. Thus, (3.1) ensures the existence of a gauge 
in which, to order 8, 

E," = @*EA,"; EA," =E,," 

E," = 8," + 8^EA," ; EA," =E,,". 
(3.3) 

We may also use the freedom of local Lorentz transformations to simplify 0,. We 
have 

R, +a, -a,L (3.4) 

so that the first term of R, and the antisymmetric part of the 8 coefficient may be gauged 
away. These choices give us a total of fifteen gauge fixing conditions, reducing the 
original twenty parameter invariance to five which correspond to x-space 
reparameterisations, local supersymmetry and local x-space Lorentz invariance. 
Choosing the first component of E," to be the vierbein, e,", and the first component of 
E," to be the &,", the Rarita-Schwinger field, one can then compute the remaining 
components of the supervierbein by a straightforward, albeit somewhat tedious, cal- 
culation by using the kinematic conditions (2.13) and their consequences (2.14-18). 
One finds 

E," = ema + ieyaXm +$%e,"A 
E,"=' = + I  (s (3.5) 

z X m  2 8  ( y ~ ) , " W m - ~ @ C l ( ~ m ) , " . A  -%J8,ymPA --h%(y,>"'4' 
E," = ioA( yQ)A, ,  E," = 6," - ;ees,"A 

where A and q9 are the first and second components of the scalar superfield S. Similarly, 
one finds for R, 

R, = U,  -te?.,x," +$JeW," +$JeCmn anA + $ J e r j ; ~ ~ y , ~ ~ x , ,  + & J e i y s ~ " x m A  (3.6) 
0, = -isA (y5)&. 

The only independent fields in this expansion are the vierbein, the Rarita-Schwinger 

(3.7) 

field and the auxiliary scalar field A.  From Tbea = 0 we find 

W ,  = -eam€ n' ane," + &, y5 y "xn 

whilst from the equation for Tbc" (2.17) one obtains 

q9 = -2iemny5Dmxn -$ymxmA, 

Here, 
1 D,Xn = a  mXn -ZWmYsXn 

(3.8) 
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is the x-space Lorentz covariant derivative. From (3.7) we observe that the x-space 
torsion is given by 

Cmna = Dmena - Dnema = iimyaxn. (3.9) 

Finally, we may employ equation (2.19) to obtain the coefficient of &3 in the expansion 
of S.  The complete form for S is then 

S = A + &,b + ft%C 

C = R  -1- 2xaya4 +iEab2aysXA -$A2 (3.10) 

where R is the x-space curvature scalar, 

R = 2emn a,@,.  (3.11) 

To find the local supersymmetry transformations of the component fields, we must 
remember that we have used both co-ordinate transformations and tangent space 
transformation to fix the gauge. Infinitesimally one has 

= tN a N E M A  4- a m e N E N A  + E M ~ L B ~ ,  8 n M  = tN  a N n M  + a M ( N n N - a M L .  

(3.12) 

From the transformations of EWA and 0, we find that the parameters have the 
expansions 

5" =f" -i~yme+$t7efynymx, 

( W  = 5" -- ;JymLxmF - f e A ( y 5 ) A w i - i 8 e ( A 5 y  ) L e u m  -8eerY Y XnXm 

L = l - -  lcys9.4 - ifym8u + iBBlys4 + s88lr YsXmA + aeeLy Y X n u m  

(3.13) m we l - - n m  w 

1 - - m  1 - -  n m . -  - 

where the first terms correspond to x-space co-ordinate transformations, local super- 
symmetry transformations and Lorentz transformations respectively. The supergauge 
transformations of the basic component fields may now be read off and one finds 

6em - ILYaxm,  8 X m  = 2DmL- ~ Y ~ L A  SA = f$. (3.14) 

These are clearly the analogue of the four dimensional supergravity transformations 
with auxiliary fields (Ferrara and van Nieuwenhuizen 1978) and it is straightforward to 
check that the algebra closes in a field-independent sense. 

a - . -  

4. Super Weyl transformations 

We recall that the ordinary Weyl transformations are rescalings of the metric, g,, --f 

f2gmn, and that a space is conformally flat if there exists a co-ordinate system in which 
the metric tensor is proportional to the flat metric. This latter situation obtains for all 
two-dimensional spaces which are therefore related by scale transformations to a flat 
space. In this sections we wish to generalise these ideas to a superspace and to show that 
any (2 + 2)-dimensional superspace satisfying (2.13) is superconformally flat. 

The simplest generalisation of Weyl transformations to superspace would consist of 
rescalings of the supervierbein with appropriate adjustments for the different dimen- 
sions involved. However, one can readily verify by direct computation that if one 
demands that the constraints (2.13) be preserved, then the scaling parameter is 
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restricted to be a constant. A possible way round this is to define super Weyl 
transformations to have the form 

(4.1) 

where 
obtained for 

is a spinor parameter to be determined. One finds a consistent scheme is 

daU = -i(ya)Up D ~ A ~ / ~  (4.2) 

and the full list of generalised Weyl transformations is then given by 

EMa = AEM" 
EMU = A1/'EMU -hA-1/2EMa(ya)UP DpA 

EaM = A-lEaM +iK2(ya)"' DpAEUM 
E U M  = A-l/2EUM 

(4.3) 

One can then compute the change in the connection to be 

whilst the superfield S has the transformation 

ŝ  = ~ l - ' S + i h - ~  DaADaA-iA-2DUDUA. (4.5) 
As in ordinary two-dimensional geometry, we observe that there is no conformally 
invariant tensor. However, in view of the above scheme, it seems natural to define a 
super-conformally flat space to be one for which we can choose a co-ordinate system 
such that the supervierbein is related to the flat supervierbein by a Weyl transformation 
i.e. 

E M a  = AEMa 
l j 2  - U (4.6) 

EMa = A  E M  - ~ I ! ? M ~ ( Y ~ ) ~ ~ B ~ A ~ ' ~  

where l ? ~ ~  is given by (2.20). 
We can now show that it is always possible to choose such a gauge for the 

(2 + 2)-dimensional superspaces under consideration. We decompose the Rarita- 
Schwinger flelds as follows: 

X m  = Y m 4  + 6m ; y .  ( = O .  (4.7) 

YmY"Ym = 0 

Then, because of the two-dimensional identity 

we may write 

(m = Y"Ym Dna 

for some spinor C Y .  Using a supergauge transformation (3.14) we can therefore set CY to 
zero. In this gauge the x-space torsion Cmna is zero and indeed the X-contribution to wm 
(3.7) drops out. We may now employ an x-space co-ordinate transformation and an 
x-space Lorentz transformation to bring ema to the conformally flat form 

ema = f6,". (4.8) 
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Hence one has, from (3.5) 

Ema(x, 8') = fama +i8'yaymq5 +$?8'fASma. (4.9) 

We may now employ a finite Lorentz transformation with nilpotent parameter L = 
-it?y5q5, followed by a co-ordinate transformation 8' = f l %  to obtain 

e )  = AS," (4.10) 
where 

(4.11) 

It is a straightforward calculation to verify that repeating this procedure on the 
remaining components of EMA yields the desired result (4.6) with A given by (4.1 1). 
Hence we have succeeded in demonstrating that (2 + 2)-dimensional superspace is 
superconformally flat. We remark that this result will not automatically be true in the 
general case, i.e. if (2.13) is not satisfied. This is because the supervierbein and 
superconnection contain eighty component fields and one only has twenty gauge 
parameters. However, there are fifty-six constraints in (2.13) and this allows us to 
describe the geometry by four functions, i.e. a scalar superfield. 

5. The spinning string 

The spinning string has been solved in x-space by three independent groups (Brink et a1 
1976, Collins andTucker 1977, Deser and Zumino 1976b) and tackled in superspace in 
Zumino (1976) and Howe (1977). In the latter paper an ansatz was made for the 
supervierbein which produced the correct equations of motion in x-space after the 
action has been integrated out over the anticommuting co-ordinates. However, the 
equations in superspace were harder to interpret. On the other hand, in Zumino (1976) 
the superspace equations of motion were shown to be equivalent to the standard 
equations of the Neveu-Schwarz-Ramond (Ramond 1971, Neveu and Schwarz 1971) 
dual model by exploiting the conformal flatness of the superspace. In the latter paper, 
however, no kinematic conditions were imposed on the supertorsion and hence an 
additional term in the action was found to be necessary. The problems of the previous 
two approaches are resolved by the imposition of the kinematic conditions (2.13) which 
in turn imply that not all of the components of the supervierbein may be varied 
independently. 

The spinning string is described in superspace by a scalar superfield 
Lorentz index of the embedding space which we suppress throughout. 
action is 

I =; d'x d 2 8 2  I 
where 

= EL = ;ED, VD" v 

V carrying a 
The natural 

(5.1) 

Here, E is the generalised determinant of the supervierbein. Variation of I with 

D,D"V = 0 (5.2) 

respect to V yields the equations of motion 
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whilst variations with respect to the supervierbein are expected to yield the constraints 
of the Neveu-Schwarz-Ramond model. We have 

8 2  = [HZ - 2 H a a ] 2  - EHabDb VDU V (5.3) 

(5.4) 

(5.7) 

The other constraint equations allow us to solve for +hB,cA and Ha' as well as some of 
the components of Ha' in terms of Hab and the remaining independent parts of Hap. 
However, (5.7) is sufficient for our purposes and one finds, upon employing the 
integration by parts formula 

I d2x d28EDAtA(-1)" = o  

valid if TCAA(-l)" = 0, that the constraint equation is 

( 5 . 8 )  

The left-hand side is just the supercovariant version of the supercurrent which contains 
amongst its components the energy-momentum and the x-space supercurrent of the 
system, whose vanishing provides the required dual model constraints. The remaining 
components contain an auxiliary field which vanishes by virtue of the equations of 
motion (5.2). Clearly, one can easily reproduce the linearised version of these con- 
straints merely by using the conformal flatness of our space (the action I being super 
Weyl invariant). In this case the scaling field A drops out of the equations and one is left 
with formally identical equations but with DAV = EAMaMV where EaM is now the 
inverse of the flat supervierbein (2.20). 

Appendix 

Co-ordinate indices are given by letters from the middle of the alphabet whilst tangent 
spaces indices are taken from the beginning. Small latin (greek) letters indicate bosonic 
(fermionic) components whilst capital letters span both types. The exterior (wedge 
product) on the basis co-ordinate one-forms is defined by 

dZM hdzN=-(-1)"' dz" A d z M  (A. 1) 
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The exterior derivative d is defined in the standard way, so for a 1-form W = 
dz M W ~  one has 

d W = d r M  ndzN-$WM. az 0 4 . 2 )  

Exterior differentiation starts from the right so that if W1 is a p-form and W2 a q-form 

d( Wi A W2) = Wi A d W2 + (-1)‘ d W1 A W2. (A.3) 

From (A. 1) and the definition of the exterior derivative it is simple to verify that 

d 2 W = 0  (A.4) 

for any p-form W. 
The bosonic metric is T a b  

Tab = diag( - 1, -t 1) and Eab = -€ba ; €01 = 1. (-4.5) 

The fermionic ‘metric’ is E,@’ 

€12 = 1 = -€21; €11 = €22 = 0. (A.6) - €4;  
Ea0 - 

Spin indices are raised and lowered by cap according to the rules 

All spinor components are elements of a real Grassmann algebra and the y matrices 
are real; 

0 P -  0 1  0 1  
(7 )a - (  -1 o); o) 

By an expression of the form &r42 where 
42 are real spinors we mean 

is any combination of y matrices and 41, 

61r42 = 41arPP42rP. (A.9) 

Finally, the Fierz rearrangement formula is given by 
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